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Laminar Hypersonic Trail in the Expansion-Conduction Region

Paur 8. Lyxoupis*
Rand Corporation, Santa Monica, Calif.

The usual procedure in calculating the cooling process in a wake behind a blunt object is to
assume a region of pure expansion up to a distance where the pressure has reached its ambient
value, followed by a region where the mechanism of pure heat conduction is operative. In
the present paper both mechanisms are assumed to be valid simultaneously, and the result is
compared with previous caleulations. The following criterion is established: the minimum
radius of a hemisphere-cylinder configuration, above which a simultaneous conduction-
expansion calculation is not needed, is given by the approximation
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where (h/h«)mia is the nondimensional value of the enthalpy at the axis of the wake below
which the two methods of computation give the same result, and M is the flight Mach number.

Nomenclature

constant defined in Eq. (13)

constant defined in Eq. (17)

constant defined in Eq. (5)

enthalpy

Mach number calculated at the freestream

exponent determining the viscosity law [Eq. (11)]

Prandtl number

pressure

transformed radial distance defined in Eq. (9)

Reynolds number

radial distance

radius of spherical body

veloeity in the freestream

veloeity in the wake

nondimensional distance in the 2 direction defined in
Eq. (9

direction of the main flow

distance behind the stagnation point from which the cool-
ing process is deseribed

distance behind the stagnation point where the ambient
pressure has been reached

enthalpy ratio defined in Eq. (6)

Gaussian-like depth defined in Eq. (6)

ratio of specific heats

coefficient of viscosity

mass density

auxiliary function defined in Eq. (14)

subseript referring to the freestream
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I. Imtroduction

RAILS of bodies moving at hypersonic speeds are of
interest to meteor physicists and those concerned with
the problem describing man-made objects re-entering the
earth’s dense atmosphere. Several papers have appeared
recently which attempt to give an account of the different
phenomena involved in the production of the trail and their
possible use in predicting the mass, geometry, and flight char-
acteristics of the object causing it.1—3
For a blunt body, the fluid is compressed through the bow-
shock wave and expanded until it is recompressed again
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through any existing flares and the so-called trailing shock,
after which further expansion takes place until the ambient
pressure is reached at all streamlines at a distance, say,
z = xo. This distance can be calculated as indicated in
Ref. 1 by using the blast-wave analogy, notwithstanding
the fact that this theory allows only the compression due to
the bow-shock wave; all other compressions, including the
one due to the trailing shock, have been shown'. 2 ta create
a small amount of irreversibility when compared to the one
created by the bow-shock wave, so that if one is interested in
caleulating the flow at a distance far downstream, its in-
fluence can be neglected in a first approximation. One thus
is left essentially with a hemisphere-cylinder geometry over
which, as first suggested in Ref. 2, the flow can be calculated
by standard numerical techniques, through the method of
characteristics using real gas properties.

From the second-order blast-wave theory of Sakurai* and
for a drag coefficient equal to one, the pressure decays along
the distance z according to the formula

p/Po = 0.1330[M2/(x/ro)] + 0.405 )

An estimate of the distance £ = x, over which the pressure is
almost ambient can be obtained from Eq. (1) by making
/P = 1; in this fashion, one finds

(@/T0)exp =~ M2/4.5 (2)

A comparison in Ref. 1 shows that this approximation is
verified by the numerical integrations of Ref. 2. It should
be noted, however, that, although Eq. (1) provides a good
approximation for small distances downstream, as z/r, —
o it yields p/p. — 0.405, an obviously erroneous result.
Whereas the pressure becomes almost ambient at the dis-
tance x = zy, the temperature still retains a maximum value
at the axis of symmetry, and the velocity at the same point
exhibits a maximum deficiency. It becomes apparent then,
that, because of the existence of these gradients and since
further cooling is not possible through the mechanism of ex-
pansion, cooling will oceur through thermal conduction.

All detailed calculations reported so far in the literature
(e.g., Refs. 1-3) assume pure expansion up to the length z,
and pure conduction for lengths higher than 2. Feldman,?
after a remark made by R. Goulard, points out that the fore-
going procedure should be modified for small bodies for which
the mechanisms of cooling by expansion and conduction are
simultaneously active.t The present paper is an attempt to

t Added in proof: In a recent paper,® Steiger and Bloom have
obtained similar solutions for several cases of linearized free
mixing with streamwise pressure gradients.
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provide a solution in a closed form over a hemisphere-
cylinder for such a case. The results of the analysis then
could be used to find the exact conditions under which the
method of separate expansion and conduction is legitimate.

First one finds, through a simple argument, the nondimen-
sional parameter that will provide a measure of the importance
of the two mechanisms of cooling. From Eq. (2), one has
(2)exp ~ M2?ry. The length (x)exp is & measure of the char-
acteristic length needed for cooling to ambient pressure by
pure expansion. The equivalent length ()cona for conduction
" can be estimated by equating the order of magnitude of the
convective and conduction terms in the equation of energy
conservation. For Prandtl number 1, this length is (£)coaa ~
(Re) 1o, where Re is the Reynolds number. Comparison of
the two lengths yields

(@) exp/ (@)cona ~ M?/Re 3)

An exact analysis will provide the numerical constant for
the number M2/Re above which there will be need for a de-
tailed conduction-expansion calculation.

II. Analysis

The following assumptions will be made:
1) The pressure decays downstream according to the for-
mula

P/pe = 1 + [b(M)/(x/r)] 4)

In Eq. (4), b(M) is a suitable function of the freestream Mach
number which can be chosen for best fit with experimental
data. The form of Eq. (4) is suggested by the blast-wave
theory,* and it has the desirable property for z/zy — « to
make p/p. — 1.0 in variance with Eq. (1). For z/z, > 5,
a good correlation with experimental data’ can be obtained if

b(M) = [4(M?* — 44.6)]/30 (5)

The general theory, however, is not restricted by the form of
Eq. (5).

2) The enthalpy profiles are similar in the sense of the fol-
lowing equation:

h/he; = a(@)fIR/B(z)] (6)

with f(0) = 1, where a(z) is the local maximum nondimen-
sional enthalpy and B(z) a corresponding Gaussian-like
depth. The assumption also is made that in the neighbor-
hood of the axis the function f behaves like a parabola. From
conservation of total energy crossing any plane perpendicular
to the axis, one obtains? 2

a@)B(@) = ax)B(x:) = const @

The distance z:/ry could be taken conveniently as equal to,
say, five, above which the Gaussian character of the enthalpy
is established (see Ref. 2) for a sphere-cylinder model.

3) For the calculation of the convective terms in the
energy equation, use a constant velocityt /U, =~ 0.8.
The energy equation is

O ,0p 1o (i ok
pubx—ubx+rbr<Prrbr> ®

Introducing the coordinates

_@/r _ (@/10) pe

% " P 2
Re paUsTo E j:) dr ©)

p

1 In reality, study of the momentum equation shows that the
full value of #/U~ = 118 recovered at the same distance where
h/ho = 1. The value of 0.8 corresponds at £ = xy and is almost
independent of Mach number. This was shown numerically in
Ref. 2. In Appendix A of Ref. 8, it is shown analytically that
u/Ue =~ {1 — M~13j12. For M between 10 and 35, the fore-
going gives u/U » between 0.73 and 0.83.
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Fig. 1 Cooling of the stagnation streamline by expansion

(curve I) and then conduction (curve IT) compared with

simultaneous consideration of expansion and conduction
(curve IIT) for Re = 100 and M = 20

and satisfying the energy equation at the axis where B — 0,
one finds

da(X) _ po Po (p/Ps) _ 4U.p
ax p hopo  dX Pru pool(z:)B(z:)

For the estimation of the contribution of the density factor in
the pressure term only, assume ideal-gas relations with ap-
propriate +v’s taken from Ref. 6. Furthermore, in the
fashion of Ref. 1, assume a viscosity law as follows:§

w/us = (h/he)™ (11)

where m is of the order of 0.25. With the foregoing substitu-
tions, the energy equation becomes

e = (151) a0 MR 4 4 i) 0
(12)

a*(X) (10)

where

(U
A = PraaB@) ( u > (13)

Equation (13) is a generalized Riccati equation in its simple
form, with the right-hand member zero and the last term
raised to the 2 + m power rather than two. It can be solved
by using the following substitution:

. dqb/dX 1 (14m)
«=| 1aa 3] 4
Substitution of Eq. (14) yields
¢ (y = Dd¢ dln(p/p) _
ax: DTy ax -0 a9

One quadrature yields
\ _
@=O<g'(m+1)(7 n _

dX P/ Y
B(M)\ Lt D=1
¢ <1 + %) v (16)

where
B(M)=b(M)/Re amn

and C is a constant of integration.

Equation (16) is general and can be integrated for any
suitable values for v and m and any function B(M). From
Ref. 6, take v/(y — 1) = 5, and from Ref. 1, m = 0.25;

§ The viscosity is introduced artificially here in order to ealeu~
late the variable thermal conductivity through the Prandil
number.
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hence, v/(m + 1)(y — 1) =~ 4. One more integration and application of the boundary condition yields

s = [LEB/X)

1/4 .
= l—I—(B/X):I —l—A(l—%—m))x—-A(l—l—m)[

L+ (B/X)T
1+<B/X>} Kot

AB(L +m) } 1+ 1+ (B/X)W4 {1 — [1 + (B/X)]"4
(1 — 1+ B/X {1+ [1+ B/X)"4

a[l + B/X)

It is easy to see that! when B = 0and X; = 0 the solution
reduces to the one corresponding to pure conduction:!

altm = 1/[1 4+ A1 + m)X] (19)

The same solution is obtained when B is small but X large.

The cooling process along the stagnation streamline ac-
cording to Eq. (18) will be compared now with the one ob-~
tained by first expanding isentropically to a distance x,, where
the pressure has reached approximately its ambient value,
with further cooling occurring by the simple conduction
model of Eq. (19). For z,, the estimate provided by Eqg.
(2) is used, because all previous papers in which the ex-
pansion and conduction mechanisms operate independently
have used this approximation. For a Mach number of the
order of 20, (x./7o)exp is about 100. For the same Mach num-
ber from Eq. (5), one obtains b =~ 50. On the other hand,
the order of magnitude of the constant A is about 10.#
Choose x:/re = 5, m = 0.25, and v/(y — 1) = 5. Curve [
in Fig. 1 shows, for a Reynolds number of 100, the cooling
process along the center line for a pure isentropic expansion.
This curve is given by the relation

h b \r—D/v
h_,,, = <1 -+ m) (20)

For the numerical case under discussion, curve I of Fig. 2
starts at the point X, = 0.05, where from Eq. (20) one finds
h/he ~ 1.61, and terminates at Xexp = (3/70) exp/Be = 1.0,
where h/h., ~ 1.09. Curve II is the result of Eq. (19) nor-
malized to the value of & = h/h., at the point X.., of curve
I.** Curve I1I is Eq. (18) normalized at the point X = X;
of curve I. Figure 2 is a similar plot, the one difference being
in the Reynolds number, which is now equal to 1000. Tigures

20—

Fig. 2 Cooling of the stagnation streamline by expansion
(curve 1) and then conduction (curve II) compared with

simultaneous consideration of expansion and conduction
(curve III) for Re = 1000 and M = 20

| Note that B from its definition [Eq. (17)] and the approxi-
mation of Eq. (5) depends, for high Mach numbers, on the quan-
tity M?/Re alone, a result compatible with the nondimensional
argument that led to Eq. (3).

# Take as characteristic values p;/pw =~ 2, Pr = 1.0, (z;) =
1, and u/U,, = 0.8. Note that specific numbers are used for
purposes of illustration. The interested reader may use any
values for m, v, A and any desired approximation for the function
b(M).
~ ** Note that hz, denotes the value of the enthalpy of the stagna-
tion streamline after complete isentropiec expansion to the
ambient pressure.

AB(1 + B\ 14 B4
i aap e (+3) - ee( 2 os

1 and 2 also represent conditions for which the value of 4
differs from 10. It is easy to show by observation of Eq.
(18) that for any other value of A it is enough to multiply
the values of X and Re by 10/4 and A/10, respectively.
Figures 3 and 4 are the equivalent of Figs. 1 and 2 for a
Mach number equal to 15, for which b ~ 25 and (z/rs)ex, ~
50. Equation (18) gave almost the same numerical results
as in the case of M = 20. This means that curves III
in Figs. 1 and 3 corresponding to the same Reynolds number
but different Mach number are almost the same after they
both are normalized at the initial station X = X;. The
same is true for curves I1I in Figs. 2 and 4. Note that curves
I and 11 lie closer to curve ITI for the smaller Mach number
because the expansion length (x/70)exp i smaller. Figures 2
and 4 show that curves II slightly undershoot curves III.
This is to be expected, since for high X’s curve I1I, based on
Bq. (18), reduces to Eq. (19) multiplied by the ratio (A/hz,)i/
(h/hzp)exp, Which is slightly higher than 1.

It is apparent that considerable difference exists between
the two methods of caleulation for small Reynolds numbers
and distances close to the body. For a velocity of about
20,000 fps (M., = 20) at an altitude of 100,000 ft, the Reyn-
olds number is about 10* cm ™!, and it is obvious from Figs.
1 and 2 that even for a 1-mym radius there should be no
difference between the two methods. For an altitude of
200,000 ft, the Reynolds number is about 300 em ™1, and for a
body 100 em in diameter the simultaneous consideration of
expansion and conduction is not warranted. However, if
one tries to simulate actual re-entry with a pellet 2 cm in
diameter (Re = 100), say, in a ballistic range, then one sees
from Fig. 1 that detailed caleulation is necessary.

III. Conclusions

It is concluded that the parameter deseribing the relative
importance of the expansion and conduction mechanisms is
essentiallytt the ratio M?/Re. In physical language, this
parameter is an expression of the fact that the characteristic
lengths needed for expansion and conduction are of the same
order. For a given flight Mach number, a series of figures
similar to the ones already presented can be constructed for
different Reynolds numbers. Each one of these figures yields
a value for h/h., below which separate computation of the
expansion and conduction regions coincide with the simul-
taneous one. From a practical point of view, this value
should be identified with the quantity (A/%.)min correspond-
ing to the smallest value of an observable that is measurable
by a given instrument (such as electron concentration, optical
or infrared radiation, etc.). An analysis of such figures has
shown that in a good approximation (A/hz)mi?, as defined
in the foregoing, is equal to 25 Re/M? The following cri-
terion therefore can be stated: the minimum radius of a
hemisphere-cylinder configuration in hypersonie flight above
which a simultaneous expansion-conduction calculation is
not needed is given by the approximation

(Re>min = P («chrmin/p'co ~ 25."[2(h/hzo>miu2 (21>

#t Apart from the influence of Prandtl number and initial
conditions as expressed by the quantities 4 and X.
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Fig.3 Cooling of the stagnation streamline by expansion
(curve I) and then conduction (curve II) compared with
simultaneous consideration of expansion and conduction

(curve III) for Re = 100 and M = 15

For Mach numbers around 10 or higher, one may set the
approximation

Fra/hey =~ M2/15 22)

In this case Eq. (21) becomes, after rounding up the numeri-
cal coefficient,

(Re)min =~ (6000/M?)(h/he)min® (23)

It is concluded that simultaneous expansion and conduction
becomes important for high altitudes (small p..), small bodies,
and small flight velocities. It should be remarked that these
are precisely the same conditions for which chemical relaxa-
tion effects become important.

Before closing, an example will be given. Feldman, on
p. 445 of Ref. 2, reports that, for an altitude of 250,000 ft and
velocity of 25,000 fps, the optical radiation in the pure con-
duction trail decays radically (one order of magnitude) in a
length equivalent to 5ro radii from the point x = 2. Since
under these conditions the distance x, is approximately equal
to 150 radii, an object 30 em in radius would be given an ex-
pansion-controlled trail equal to the conduction-controlled
one, and hence a simultaneous calculation for expansion and
conduction would be necessary.}ii From Ref. 2, at a dis-
tance from x = x, equal to 57y radii, the value A/h,, = 0.7 is
estimated. For the altitude and Mach number under in-
vestigation, Eq. (21) gives rmin ~ 75 em. This is the radius
above which the two methods of caleulation coincide below
the value h/h., = 0.7. On the other hand, if it is of interest
to study the infrared radiation that, from Ref. 2, drops in the

11 Feldman found also that at the radius of 30 em the slope
of the optical intensity at x = =z, for the pure expansion and pure
conduction trail are equal.”
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Fig. 4 Cooling of the stagnation streamline by expansion

(curve I) and then conduction (curve II) compared. with

simultaneous consideration of expansion and conduction
(curve 1IT) for Re = 1000 and M = 15

pure conduction trail much slower than the optical radiation
(one estimates from Ref. 2 that, for an order of magnitude
drop, h/h,, ~ 0.23), one obtains from Eq. (21) 7mim ~ 8
cm. Feldman’s rough calculation of the same number is
Tmin < 3 €.
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